Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.177
Filtrar
2.
Mater Horiz ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629215

RESUMO

Magnetic propulsion of nano-/micro-robots is an effective way to treat implant-associated infections by physically destroying biofilm structures to enhance antibiotic killing. However, it is hard to precisely control the propulsion in vivo. Magnetic-nanoparticle coating that can be magnetically pulled off does not need precise control, but the requirement of adhesion stability on an implant surface restricts its magnetic responsiveness. Moreover, whether the coating has been fully pulled-off or not is hard to ensure in real-time in vivo. Herein, composited silk fibroins (SFMA) are optimized to stabilize Fe3O4 nanoparticles on a titanium surface in a dry environment; while in an aqueous environment, the binding force of SFMA on titanium is significantly reduced due to hydrophilic interaction, making the coating magnetically controllable by an externally-used magnet but still stable in the absence of a magnet. The maximum working distance of the magnet can be calculated using magnetomechanical simulation in which the yielding magnetic traction force is strong enough to pull Fe3O4 nanoparticles off the surface. The pulling-off removes the biofilms that formed on the coating and enhances antibiotic killing both in vitro and in a rat sub-cutaneous implant model by up to 100 fold. This work contributes to the practical knowledge of magnetic propulsion for biofilm treatment.

3.
Front Neurosci ; 18: 1309684, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576865

RESUMO

The loss of dopaminergic neurons in the substantia nigra and the abnormal accumulation of synuclein proteins and neurotransmitters in Lewy bodies constitute the primary symptoms of Parkinson's disease (PD). Besides environmental factors, scholars are in the early stages of comprehending the genetic factors involved in the pathogenic mechanism of PD. Although genome-wide association studies (GWAS) have unveiled numerous genetic variants associated with PD, precisely pinpointing the causal variants remains challenging due to strong linkage disequilibrium (LD) among them. Addressing this issue, expression quantitative trait locus (eQTL) cohorts were employed in a transcriptome-wide association study (TWAS) to infer the genetic correlation between gene expression and a particular trait. Utilizing the TWAS theory alongside the enhanced Joint-Tissue Imputation (JTI) technique and Mendelian Randomization (MR) framework (MR-JTI), we identified a total of 159 PD-associated genes by amalgamating LD score, GTEx eQTL data, and GWAS summary statistic data from a substantial cohort. Subsequently, Fisher's exact test was conducted on these PD-associated genes using 5,152 differentially expressed genes sourced from 12 PD-related datasets. Ultimately, 29 highly credible PD-associated genes, including CTX1B, SCNA, and ARSA, were uncovered. Furthermore, GO and KEGG enrichment analyses indicated that these genes primarily function in tissue synthesis, regulation of neuron projection development, vesicle organization and transportation, and lysosomal impact. The potential PD-associated genes identified in this study not only offer fresh insights into the disease's pathophysiology but also suggest potential biomarkers for early disease detection.

4.
Nat Commun ; 15(1): 3131, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605012

RESUMO

Reconciling the dilemma between rapid degradation and overdose toxicity is challenging in biodegradable materials when shifting from bulk to porous materials. Here, we achieve significant bone ingrowth into Zn-based porous scaffolds with 90% porosity via osteoinmunomodulation. At microscale, an alloy incorporating 0.8 wt% Li is employed to create a eutectoid lamellar structure featuring the LiZn4 and Zn phases. This microstructure optimally balances high strength with immunomodulation effects. At mesoscale, surface pattern with nanoscale roughness facilitates filopodia formation and macrophage spreading. At macroscale, the isotropic minimal surface G unit exhibits a proper degradation rate with more uniform feature compared to the anisotropic BCC unit. In vivo, the G scaffold demonstrates a heightened efficiency in promoting macrophage polarization toward an anti-inflammatory phenotype, subsequently leading to significantly elevated osteogenic markers, increased collagen deposition, and enhanced new bone formation. In vitro, transcriptomic analysis reveals the activation of JAK/STAT pathways in macrophages via up regulating the expression of Il-4, Il-10, subsequently promoting osteogenesis.


Assuntos
Osteogênese , Tecidos Suporte , Osteogênese/fisiologia , Tecidos Suporte/química , Porosidade , Impressão Tridimensional , Zinco/farmacologia
5.
J Vis Exp ; (205)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38619279

RESUMO

Respiratory tract infections (RTIs) are among the most common problems in clinical settings. Rapid and accurate identification of bacterial pathogens will provide practical guidelines for managing and treating RTIs. This study describes a method for rapidly detecting bacterial pathogens that cause respiratory tract infections via multi-channel loop-mediated isothermal amplification (LAMP). LAMP is a sensitive and specific diagnostic tool that rapidly detects bacterial nucleic acids with high accuracy and reliability. The proposed method offers a significant advantage over traditional bacterial culturing methods, which are time-consuming and often require greater sensitivity for detecting low levels of bacterial nucleic acids. This article presents representative results of K. pneumoniae infection and its multiple co-infections using LAMP to detect samples (sputum, bronchial lavage fluid, and alveolar lavage fluid) from the lower respiratory tract. In summary, the multi-channel LAMP method provides a rapid and efficient means of identifying single and multiple bacterial pathogens in clinical samples, which can help prevent the spread of bacterial pathogens and aid in the appropriate treatment of RTIs.


Assuntos
Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Ácidos Nucleicos , Infecções Respiratórias , Humanos , Microfluídica , Reprodutibilidade dos Testes , Infecções Respiratórias/diagnóstico , Klebsiella pneumoniae
6.
Front Immunol ; 15: 1376544, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638440

RESUMO

Background: Sarcopenia, common in the elderly, often linked to chronic diseases, correlates with inflammation.The association between SII and mortality in sarcopenia patients is underexplored, this study investigates this relationship in a U.S. adult cohort. Methods: We analyzed 1999-2018 NHANES data, focusing on 2,974 adults with sarcopenia. Mortality outcomes were determined by linking to National Death Index (NDI) records up to December 31, 2019. Using a weighted sampling design, participants were grouped into three groups by the Systemic Immune-Inflammation Index (SII). We used Cox regression models, adjusting for demographic and clinical variables, to explore SII's association with all-cause and cause-specific mortality in sarcopenia, performing sensitivity analyses for robustness. Results: Over a median follow-up of 9.2 years, 829 deaths occurred. Kaplan-Meier analysis showed significant survival differences across SII groups. The highest SII group showed higher hazard ratios (HRs) for all-cause and cause-specific mortality in both crude and adjusted models. The highest SII group had a higher HR for all-cause(1.57, 1.25-1.98), cardiovascular(1.61, 1.00-2.58), cancer(2.13, 1.32-3.44), and respiratory disease mortality(3.21, 1.66-6.19) in fully adjusted models. Subgroup analyses revealed SII's association with all-cause mortality across various demographics, including age, gender, and presence of diabetes or cardiovascular disease. Sensitivity analyses, excluding participants with cardiovascular diseases, those who died within two years of follow-up, or those under 45 years of age, largely reflected these results, with the highest SII group consistently demonstrating higher HRs for all types of mortality in both unadjusted and adjusted models. Conclusion: Our study is the first to demonstrate a significant relationship between SII and increased mortality risks in a sarcopenia population.


Assuntos
Doenças Cardiovasculares , Sarcopenia , Adulto , Idoso , Humanos , Causas de Morte , Inquéritos Nutricionais , Inflamação
7.
J Sci Food Agric ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655901

RESUMO

BACKGROUND: Whey protein isolate (WPI) generally represents poor functional properties such as thermal stability, emulsifying activity and antioxidant activity near its isoelectric point or high temperatures, which limit its application in food industry. The preparation of WPI-polysaccharide covalent conjugates based on Maillard reaction is a promising method to improve the physical and chemical stability and functional properties of WPI. In this research, WPI-inulin conjugates were prepared through wet heating method and ultrasound method and their structural and functional properties were examined. RESULTS: In conjugates, the free amino acid content was reduced, the high molecular bands were emerged at SDS-PAGE, new C-N bonds were formed in FT-IR spectroscopy, and fluorescence intensity was reduced compared with WPI. Furthermore, the result of CD spectrum also showed that the secondary structure of conjugates was changed. Conjugates with ultrasound treatment had better structural properties compared with those prepared by wet heating treatment. The functional properties such as thermal stability, emulsifying activity index (EAI), emulsion stability (ES) and antioxidant activity of conjugates with wet heating treatment were significantly improved compared with WPI. The EAI and ES of conjugates with ultrasound treatment were the highest, but the thermal stability and antioxidant activity were only close to that of the conjugates with wet heating treatment for 2 h. CONCLUSION: This study revealed that WPI-inulin conjugates prepared with ultrasound or wet heating method not only changed the structural characteristics of WPI but also could promote its functional properties including thermal stability, EAI, ES and antioxidant activity. This article is protected by copyright. All rights reserved.

8.
World J Gastroenterol ; 30(11): 1588-1608, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38617450

RESUMO

BACKGROUND: Acute liver failure (ALF) has a high mortality with widespread hepatocyte death involving ferroptosis and pyroptosis. The silent information regulator sirtuin 1 (SIRT1)-mediated deacetylation affects multiple biological processes, including cellular senescence, apoptosis, sugar and lipid metabolism, oxidative stress, and inflammation. AIM: To investigate the association between ferroptosis and pyroptosis and the upstream regulatory mechanisms. METHODS: This study included 30 patients with ALF and 30 healthy individuals who underwent serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) testing. C57BL/6 mice were also intraperitoneally pretreated with SIRT1, p53, or glutathione peroxidase 4 (GPX4) inducers and inhibitors and injected with lipopolysaccharide (LPS)/D-galactosamine (D-GalN) to induce ALF. Gasdermin D (GSDMD)-/- mice were used as an experimental group. Histological changes in liver tissue were monitored by hematoxylin and eosin staining. ALT, AST, glutathione, reactive oxygen species, and iron levels were measured using commercial kits. Ferroptosis- and pyroptosis-related protein and mRNA expression was detected by western blot and quantitative real-time polymerase chain reaction. SIRT1, p53, and GSDMD were assessed by immunofluorescence analysis. RESULTS: Serum AST and ALT levels were elevated in patients with ALF. SIRT1, solute carrier family 7a member 11 (SLC7A11), and GPX4 protein expression was decreased and acetylated p5, p53, GSDMD, and acyl-CoA synthetase long-chain family member 4 (ACSL4) protein levels were elevated in human ALF liver tissue. In the p53 and ferroptosis inhibitor-treated and GSDMD-/- groups, serum interleukin (IL)-1ß, tumour necrosis factor alpha, IL-6, IL-2 and C-C motif ligand 2 levels were decreased and hepatic impairment was mitigated. In mice with GSDMD knockout, p53 was reduced, GPX4 was increased, and ferroptotic events (depletion of SLC7A11, elevation of ACSL4, and iron accumulation) were detected. In vitro, knockdown of p53 and overexpression of GPX4 reduced AST and ALT levels, the cytostatic rate, and GSDMD expression, restoring SLC7A11 depletion. Moreover, SIRT1 agonist and overexpression of SIRT1 alleviated acute liver injury and decreased iron deposition compared with results in the model group, accompanied by reduced p53, GSDMD, and ACSL4, and increased SLC7A11 and GPX4. Inactivation of SIRT1 exacerbated ferroptotic and pyroptotic cell death and aggravated liver injury in LPS/D-GalN-induced in vitro and in vivo models. CONCLUSION: SIRT1 activation attenuates LPS/D-GalN-induced ferroptosis and pyroptosis by inhibiting the p53/GPX4/GSDMD signaling pathway in ALF.


Assuntos
Falência Hepática Aguda , Sirtuína 1 , Animais , Humanos , Camundongos , Gasderminas , Ferro , Lipopolissacarídeos , Falência Hepática Aguda/induzido quimicamente , Camundongos Endogâmicos C57BL , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Sirtuína 1/genética , Proteína Supressora de Tumor p53
9.
Heliyon ; 10(7): e29020, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38617917

RESUMO

Purpose: This study aimed to systematically evaluate the quality of content and information in videos related to gestational diabetes mellitus on Chinese social media platforms. Methods: The videos on various platforms, TikTok, Bilibili, and Weibo, were searched with the keyword "gestational diabetes mellitus" in Chinese, and the first 50 videos with a comprehensive ranking on each platform were included for subsequent analysis. Characteristic information of video was collected, such as their duration, number of days online, number of likes, comments, and number of shares. DISCREN, JAMA (The Journal of the American Medical Association) Benchmark Criteria, and GQS (Global Quality Scores) were used to assess the quality of all videos. Finally, the correlation analysis was performed among video features, video sources, DISCERN scores, and JAMA scores. Results: Ultimately, 135 videos were included in this study. The mean DISCERN total score was 31.84 ± 7.85, the mean JAMA score was 2.33 ± 0.72, and the mean GQS was 2.00 ± 0.40. Most of the videos (52.6%) were uploaded by independent medical professionals, and videos uploaded by professionals had the shortest duration and time online (P < 0.001). The source of the video was associated with numbers of "likes", "comments", and "shares" for JAMA scores (P < 0.001), but there was no correlation with DISCERN scores. Generally, videos on TikTok with the shortest duration received the most numbers of "likes", "comments", and "shares", but the overall quality of videos on Weibo was higher. Conclusion: Although the majority of the videos were uploaded by independent medical professionals, the overall quality appeared to be poor. Therefore, more efforts and actions should be taken to improve the quality of videos related to gestational diabetes mellitus.

10.
Nat Ecol Evol ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519631

RESUMO

Mosquito transmitted viruses are responsible for an increasing burden of human disease. Despite this, little is known about the diversity and ecology of viruses within individual mosquito hosts. Here, using a meta-transcriptomic approach, we determined the viromes of 2,438 individual mosquitoes (81 species), spanning ~4,000 km along latitudes and longitudes in China. From these data we identified 393 viral species associated with mosquitoes, including 7 (putative) species of arthropod-borne viruses (that is, arboviruses). We identified potential mosquito species and geographic hotspots of viral diversity and arbovirus occurrence, and demonstrated that the composition of individual mosquito viromes was strongly associated with host phylogeny. Our data revealed a large number of viruses shared among mosquito species or genera, enhancing our understanding of the host specificity of insect-associated viruses. We also detected multiple virus species that were widespread throughout the country, perhaps reflecting long-distance mosquito dispersal. Together, these results greatly expand the known mosquito virome, linked viral diversity at the scale of individual insects to that at a country-wide scale, and offered unique insights into the biogeography and diversity of viruses in insect vectors.

11.
Food Chem X ; 22: 101257, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38495458

RESUMO

In this study, high-throughput sequencing and metabolomics analysis were conducted to analyze the microbial and metabolites of dry-cured Sanchuan ham, Laowo ham, Nuodeng ham, and Heqing ham that have fermented for two years produced from western Yunnan China. Results showed that at the genus level, the dominant bacteria in the four types of ham were Halomonas and Staphylococcus, while the dominant fungi were Aspergillus and Yamadazyma. A total 422 different metabolites were identified in four types of ham, mainly amino acids, peptides, fatty acids, and their structural analogs, which were involved in pantothenate and coenzyme A biosynthesis, caffeine, and tyrosine metabolism. The dominant microorganisms of the four types of ham were mainly related to the metabolism of fatty acids and amino acids. This research enhances the identification degree of these four types of dry-cured ham and provides a theoretical basis for developing innovative and distinctive ham products.

12.
Inorg Chem ; 63(13): 5961-5971, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494631

RESUMO

Titanium-oxo cluster (TOC)-based metal-organic frameworks (MOFs) have received considerable attention in recent years due to their ability to expand the application of TOCs to fields that require highly stable frameworks. Herein, a new cyclic TOC formulated as [Ti6O6(OiPr)8(TTFTC)(phen)2]2 (1, where TTFTC = tetrathiafulvalene tetracarboxylate and phen = phenanthroline) was crystallographically characterized. TOC 1 takes a rectangular ring structure with two phen-modified Ti6 clusters as the width and two TTFTC ligands as the length. An intracluster ligand-to-ligand (TTF-to-phen) charge transfer in 1 was found for TOCs for the first time. Compound 1 undergoes topotactic conversion to generate stable TOC-MOF P1, in which the rectangular framework in 1 formed by a TOC core and ligands is retained, as verified by comprehensive characterization. P1 shows an efficient and rapid selective adsorption capacity for cationic dyes. The experimental adsorption capacity (qex) of P1 reaches a value of up to 789.2 mg/g at 298 K for the crystal violet dye, which is the highest among those of various adsorbents. The calculated models are first used to reveal the structure-property relationship of the cyclic host to different guest dyes. The results further confirmed the host MOF structure of P1.

13.
J Colloid Interface Sci ; 664: 275-283, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38471190

RESUMO

Planktonic bacterial presence in many industrial and environmental applications and personal health-care products is generally countered using antimicrobials. However, antimicrobial chemicals present an environmental threat, while emerging resistance reduces their efficacy. Suspended bacteria have no defense against mechanical attack. Therefore, we synthesized silica hexapods on an α-Fe2O3 core that can be magnetically-rotated to inflict lethal cell-wall-damage to planktonic Gram-negative and Gram-positive bacteria. Hexapods possessed 600 nm long nano-spikes, composed of SiO2, as shown by FTIR and XPS. Fluorescence staining revealed cell wall damage caused by rotating hexapods. This damage was accompanied by DNA/protein release and bacterial death that increased with increasing rotational frequency up to 500 rpm. Lethal puncturing was more extensive on Gram-negative bacteria than on Gram-positive bacteria, which have a thicker peptidoglycan layer with a higher Young's modulus. Simulations confirmed that cell-wall-puncturing occurs at lower nano-spike penetration levels in the cell walls of Gram-negative bacteria. This approach offers a new way to kill bacteria in suspension, not based on antimicrobial chemicals.


Assuntos
Anti-Infecciosos , Bactérias Gram-Negativas , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Dióxido de Silício/farmacologia , Dióxido de Silício/metabolismo , Bactérias Gram-Positivas/metabolismo , Plâncton , Bactérias , Parede Celular
14.
J Virol ; 98(4): e0013924, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38501663

RESUMO

Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a novel porcine enteric coronavirus, and the broad interspecies infection of SADS-CoV poses a potential threat to human health. This study provides experimental evidence to dissect the roles of distinct domains within the SADS-CoV spike S1 subunit in cellular entry. Specifically, we expressed the S1 and its subdomains, S1A and S1B. Cell binding and invasion inhibition assays revealed a preference for the S1B subdomain in binding to the receptors on the cell surface, and this unknown receptor is not utilized by the porcine epidemic diarrhea virus. Nanoparticle display demonstrated hemagglutination of erythrocytes from pigs, humans, and mice, linking the S1A subdomain to the binding of sialic acid (Sia) involved in virus attachment. We successfully rescued GFP-labeled SADS-CoV (rSADS-GFP) from a recombinant cDNA clone to track viral infection. Antisera raised against S1, S1A, or S1B contained highly potent neutralizing antibodies, with anti-S1B showing better efficiency in neutralizing rSADS-GFP infection compared to anti-S1A. Furthermore, depletion of heparan sulfate (HS) by heparinase treatment or pre-incubation of rSADS-GFP with HS or constituent monosaccharides could inhibit SADS-CoV entry. Finally, we demonstrated that active furin cleavage of S glycoprotein and the presence of type II transmembrane serine protease (TMPRSS2) are essential for SADS-CoV infection. These combined observations suggest that the wide cell tropism of SADS-CoV may be related to the distribution of Sia or HS on the cell surface, whereas the S1B contains the main protein receptor binding site. Specific host proteases also play important roles in facilitating SADS-CoV entry.IMPORTANCESwine acute diarrhea syndrome coronavirus (SADS-CoV) is a novel pathogen infecting piglet, and its unique genetic evolution characteristics and broad species tropism suggest the potential for cross-species transmission. The virus enters cells through its spike (S) glycoprotein. In this study, we identify the receptor binding domain on the C-terminal part of the S1 subunit (S1B) of SADS-CoV, whereas the sugar-binding domain located at the S1 N-terminal part of S1 (S1A). Sialic acid, heparan sulfate, and specific host proteases play essential roles in viral attachment and entry. The dissection of SADS-CoV S1 subunit's functional domains and identification of cellular entry cofactors will help to explore the receptors used by SADS-CoV, which may contribute to exploring the mechanisms behind cross-species transmission and host tropism.


Assuntos
Alphacoronavirus , Infecções por Coronavirus , Ácido N-Acetilneuramínico , Animais , Camundongos , Humanos , Suínos , Glicoproteínas , Heparitina Sulfato , Peptídeo Hidrolases , Glicoproteína da Espícula de Coronavírus/metabolismo
15.
Chin Med J (Engl) ; 137(8): 980-989, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38445358

RESUMO

BACKGROUND: Somatic copy number variations (SCNVs) in the CDKN2A gene are among the most frequent events in the dysplasia-carcinoma sequence of esophageal squamous cell carcinoma. However, whether CDKN2A SCNVs are useful biomarkers for the risk stratification and management of patients with esophageal squamous cell dysplasia (ESCdys) is unknown. This study aimed to investigate the characteristics and prognostic value of CDKN2A SCNVs in patients with mild or moderate (m/M) ESCdys. METHODS: This study conducted a prospective multicenter study of 205 patients with a baseline diagnosis of m/M ESCdys in five high-risk regions of China (Ci County, Hebei Province; Yanting, Sichuan Province; Linzhou, Henan Province; Yangzhong, Jiangsu Province; and Feicheng, Shandong Province) from 2005 to 2019. Genomic DNA was extracted from paraffin biopsy samples and paired peripheral white blood cells from patients, and a quantitative polymerase chain reaction assay, P16-Light, was used to detect CDKN2A copy number. The cumulative regression and progression rates of ESCdys were evaluated using competing risk models. RESULTS: A total of 205 patients with baseline m/M ESCdys were enrolled. The proportion of ESCdys regression was significantly lower in the CDKN2A deletion cohort than in the diploid and amplification cohorts (18.8% [13/69] vs. 35.0% [28/80] vs. 51.8% [29/56], P  <0.001). In the univariable competing risk analysis, the cumulative regression rate was statistically significantly lower ( P = 0.008), while the cumulative progression rate was higher ( P = 0.017) in ESCdys patients with CDKN2A deletion than in those without CDKN2A deletion. CDKN2A deletion was also an independent predictor of prognosis in ESCdys ( P = 0.004) in the multivariable analysis. CONCLUSION: The results indicated that CDKN2A SCNVs are associated with the prognosis of ESCdys and may serve as potential biomarkers for risk stratification.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina , Variações do Número de Cópias de DNA , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Variações do Número de Cópias de DNA/genética , Feminino , Masculino , Pessoa de Meia-Idade , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Estudos Prospectivos , Prognóstico , Idoso , Adulto
16.
Diabetol Metab Syndr ; 16(1): 57, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429774

RESUMO

PURPOSE: To evaluate the effect of intrahepatic cholestasis of pregnancy (ICP) with gestational diabetes mellitus (GDM) on perinatal outcomes and establish a prediction model of adverse perinatal outcomes in women with ICP. METHODS: This multicenter retrospective cohort study included the clinical data of 2,178 pregnant women with ICP, including 1,788 women with ICP and 390 co-occurrence ICP and GDM. The data of all subjects were collected from hospital electronic medical records. Univariate and multivariate logistic regression analysis were used to compare the incidence of perinatal outcomes between ICP with GDM group and ICP alone group. RESULTS: Baseline characteristics of the population revealed that maternal age (p < 0.001), pregestational weight (p = 0.01), pre-pregnancy BMI (p < 0.001), gestational weight gain (p < 0.001), assisted reproductive technology (ART) (p < 0.001), and total bile acid concentration (p = 0.024) may be risk factors for ICP with GDM. Furthermore, ICP with GDM demonstrated a higher association with both polyhydramnios (OR 2.66) and preterm labor (OR 1.67) compared to ICP alone. Further subgroup analysis based on the severity of ICP showed that elevated total bile acid concentrations were closely associated with an increased risk of preterm labour, meconium-stained amniotic fluid, and low birth weight in both ICP alone and ICP with GDM groups. ICP with GDM further worsened these outcomes, especially in women with severe ICP. The nomogram prediction model effectively predicted the occurrence of preterm labour in the ICP population. CONCLUSIONS: ICP with GDM may result in more adverse pregnancy outcomes, which are associated with bile acid concentrations.

17.
ACS Appl Mater Interfaces ; 16(12): 14434-14444, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38498684

RESUMO

Natural compounds like pterostilbene (PTE) have gained recognition for their various biological activities and potential health benefits. However, challenges related to bioavailability and limited clinical efficacy have prompted efforts to strengthen their therapeutic potential. To meet these challenges, we herein rationally designed and successfully synthesized a pharmaceutical phosphoramidite that allows for the programmable incorporation of PTE into oligonucleotides. The resultant aptamer-PTE conjugate can selectively bind to cancer cells, leading to a specific internalization and drug release. Moreover, compared with free PTE, the conjugate exhibits superior cytotoxicity in cancer cells. Specifically, in a zebrafish xenograft model, the nanomedicine effectively inhibits tumor growth and neovascularization, highlighting its potential for targeted antitumor therapy. This approach presents a promising avenue for harnessing the therapeutic potential of natural compounds via a nanomedicine solution.


Assuntos
Nanomedicina , Neoplasias , Animais , Humanos , Peixe-Zebra , Neoplasias/tratamento farmacológico , Oligonucleotídeos , Preparações Farmacêuticas , Linhagem Celular Tumoral
18.
World J Clin Cases ; 12(6): 1174-1181, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38464929

RESUMO

BACKGROUND: Autoimmune hepatitis (AIH) and primary biliary cholangitis (PBC) are two common clinical autoimmune liver diseases, and some patients have both diseases; this feature is called AIH-PBC overlap syndrome. Autoimmune thyroid disease (AITD) is the most frequently overlapping extrahepatic autoimmune disease. Immunoglobulin (IgG) 4-related disease is an autoimmune disease recognized in recent years, characterized by elevated serum IgG4 levels and infiltration of IgG4-positive plasma cells in tissues. CASE SUMMARY: A 68-year-old female patient was admitted with a history of right upper quadrant pain, anorexia, and jaundice on physical examination. Laboratory examination revealed elevated liver enzymes, multiple positive autoantibodies associated with liver and thyroid disease, and imaging and biopsy suggestive of pancreatitis, hepatitis, and PBC. A diagnosis was made of a rare and complex overlap syndrome of AIH, PBC, AITD, and IgG4-related disease. Laboratory features improved on treatment with ursodeoxycholic acid, methylprednisolone, and azathioprine. CONCLUSION: This case highlights the importance of screening patients with autoimmune diseases for related conditions.

19.
Front Immunol ; 15: 1287132, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348024

RESUMO

Background: Neutrophil extracellular traps (NETs) play a key role in thrombus formation in patients with coronavirus disease 2019 (COVID-19). However, the existing detection and observation methods for NETs are limited in their ability to provide quantitative, convenient, and accurate descriptions of in situ NETs. Therefore, establishing a quantitative description of the relationship between NETs and thrombosis remains a challenge. Objective: We employed morphological observations of blood cells and statistical analyses to investigate the correlation between the NETs/neutrophilic segmented granulocyte ratio and mortality risk in patients with COVID-19. Methods: Peripheral blood samples were collected from 117 hospitalized patients with COVID-19 between November 2022 and February 2023, and various blood cell parameters were measured. Two types of smudge cells were observed in the blood and counted: lymphatic and neutral smudge cells. Statistical data analysis was used to establish COVID-19 mortality risk assessment indicators. Results: Morphological observations of neutrophilic smudge cells revealed swelling, eruption, and NETs formation in the neutrophil nuclei. Subsequently, the NETs/neutrophilic segmented granulocyte ratio (NNSR) was calculated. A high concentration of NETs poses a fatal risk for thrombus formation in patients. Statistical analysis indicated that a high NNSR was more suitable for evaluating the risk of death in patients with COVID-19 compared to elevated fibrinogen (FIB) and D-dimer (DD) levels. Conclusion: Observing blood cell morphology is an effective method for the detection of NETs, NNSR are important markers for revealing the mortality risk of patients with COVID-19.


Assuntos
COVID-19 , Armadilhas Extracelulares , Trombose , Humanos , Armadilhas Extracelulares/metabolismo , COVID-19/metabolismo , Neutrófilos/metabolismo , Trombose/metabolismo
20.
Chem Commun (Camb) ; 60(19): 2669-2672, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38351890

RESUMO

Reported herein is a photochemical strategy for C(sp3)-H azolation of ethers via a hydrogen-atom transfer and radical-polar crossover process, offering efficient access to valuable N-alkylated azoles under visible-light irradiation. The protocol is metal-free and photocatalyst-free, and exhibits good to excellent yields and broad substrate scope with regard to azoles. EPR experiments provide evidence for the formation of intermediates formed in situ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...